

Terzaghi's Analysis in Water Table is Below the Base of Footing Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 25 Terzaghi's Analysis in Water Table is Below the Base of Footing Formulas

Terzaghi's Analysis in Water Table is Below the Base of Footing 🗗

1) Cohesion of Soil given Depth and Width of Footing

$$ext{C} = rac{q_{fc} - \left(\left(\gamma \cdot D_{footing} \cdot N_q
ight) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma
ight)
ight)}{N_c}$$

Open Calculator 🗗

$$\boxed{ 0.7892 \text{kPa} = \frac{127.8 \text{kPa} - ((18 \text{kN/m}^3 \cdot 2.54 \text{m} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6))}{9} }$$

2) Cohesion of Soil given Net Ultimate Bearing Capacity

$$\boxed{\textbf{C}_s = \frac{q_{nf} - \left(\left(\sigma_s \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right) \right)}{N_c}}$$

Open Calculator

$$\boxed{ 8.315667 \text{kPa} = \frac{150 \text{kN/m}^2 - \left(\left(45.9 \text{kN/m}^2 \cdot \left(2.01 - 1 \right) \right) + \left(0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \right) \right) }$$

3) Cohesion of Soil given Safe Bearing Capacity

$$\boxed{ C_s = \frac{\left(\left(q_{sa} \cdot f_s \right) - \left(f_s \cdot \sigma' \right) \right) - \left(\left(\sigma_s \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right) \right)}{N_c} }$$

Open Calculator

ex

$$13.42367 \text{kPa} = \frac{\left((70 \text{kN/m}^2 \cdot 2.8) - (2.8 \cdot 10.0 \text{Pa}) \right) - \left((45.9 \text{kN/m}^2 \cdot (2.01 - 1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6) \right)}{9}$$

4) Depth of Footing given Bearing Capacity Factor

$$\mathbf{r} \mathbf{p} \mathbf{r} = rac{\mathrm{q}_{\mathrm{fc}} - \left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}
ight) + \left(0.5 \cdot \gamma \cdot \mathrm{B} \cdot \mathrm{N}_{\gamma}
ight)
ight)}{\gamma \cdot \mathrm{N}_{\mathrm{q}}}$$

Open Calculator

5) Depth of Footing given Bearing Capacity Factor and Width of Footing 🗗

 $D = rac{q_{
m nf} - \left(\left(C_{
m s} \cdot N_{
m c}
ight) + \left(0.5 \cdot \gamma \cdot {
m B} \cdot N_{
m \gamma}
ight)
ight)}{\gamma \cdot \left(N_{
m g} - 1
ight)}$

Open Calculator

$$\underbrace{ 4.191419 m = \frac{150 kN/m^2 - \left(\left(5.0 kPa \cdot 9 \right) + \left(0.5 \cdot 18 kN/m^3 \cdot 2m \cdot 1.6 \right) \right) }{18 kN/m^3 \cdot \left(2.01 - 1 \right) } }$$

6) Depth of Footing given Factor of Safety and Safe Bearing Capacity

 $D = rac{\left(q_{sa} \cdot f_s
ight) - \left(\left(C_s \cdot N_c
ight) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma
ight)
ight)}{\gamma \cdot N_q}$

Open Calculator

$$\boxed{ 3.377557 m = \frac{ \left(70 kN/m^2 \cdot 2.8 \right) - \left(\left(5.0 kPa \cdot 9 \right) + \left(0.5 \cdot 18 kN/m^3 \cdot 2m \cdot 1.6 \right) \right) }{18 kN/m^3 \cdot 2.01} }$$

7) Effective Surcharge given Bearing Capacity Factor

 $\sigma_s = \frac{q_{nf} - \left(\left(C_s \cdot N_c \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right) \right)}{N_q - 1}$

Open Calculator

$$\boxed{ 103.6808 \text{kN/m}^2 = \frac{150 \text{kN/m}^2 - ((5.0 \text{kPa} \cdot 9) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6))}{2.01 - 1} }$$

8) Effective Surcharge given Safe Bearing Capacity

 $\sigma_{s} = \frac{\left(q_{sa} \cdot f_{s}\right) - \left(\left(C_{s} \cdot N_{c}\right) + \left(0.5 \cdot \gamma \cdot B \cdot N_{\gamma}\right)\right)}{f_{s} + N_{q} - 1}$

Open Calculator 🗗

$$\boxed{ 32.07349 \text{kN/m}^2 = \frac{\left(70 \text{kN/m}^2 \cdot 2.8\right) - \left(\left(5.0 \text{kPa} \cdot 9\right) + \left(0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6\right)\right)}{2.8 + 2.01 - 1} }$$

9) Factor of Safety given Bearing Capacity Factor

 $\boxed{\mathbf{f}_s = \frac{\left(C_s \cdot N_c\right) + \left(\sigma_s \cdot \left(N_q - 1\right)\right) + \left(0.5 \cdot \gamma \cdot B \cdot N_{\gamma}\right)}{q_{sa} - \sigma_s}}$

Open Calculator

$$4.985851 = \frac{(5.0 \text{kPa} \cdot 9) + (45.9 \text{kN/m}^2 \cdot (2.01 - 1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2\text{m} \cdot 1.6)}{70 \text{kN/m}^2 - 45.9 \text{kN/m}^2}$$

10) Factor of Safety given Depth and Width of Footing

 $\boxed{\mathbf{f}_s = \frac{\left(C_s \cdot N_c\right) + \left(\left(\gamma \cdot D\right) \cdot \left(N_q - 1\right)\right) + \left(0.5 \cdot \gamma \cdot B \cdot N_{\gamma}\right)}{q_{sa} - \left(\gamma \cdot D\right)}}$

Open Calculator 🖒

 $\boxed{ 1.778499 = \frac{ (5.0 \text{kPa} \cdot 9) + ((18 \text{kN/m}^3 \cdot 1.01 \text{m}) \cdot (2.01 - 1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6) }{70 \text{kN/m}^2 - (18 \text{kN/m}^3 \cdot 1.01 \text{m}) } }$

11) Net Ultimate Bearing Capacity given Bearing Capacity Factor

 $\boxed{\textbf{k}} \left[q_{nf} = \left(C_s \cdot N_c \right) + \left(\sigma_s \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right) \right]$

Open Calculator

12) Net Ultimate Bearing Capacity given Depth and Width of Footing

 $\mathbf{R} = \left(\left(C_s \cdot N_c \right) + \left(\left(\gamma \cdot D \right) \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right) \right)$

Open Calculator

 $\boxed{ 92.1618 \text{kN/m}^2 = ((5.0 \text{kPa} \cdot 9) + ((18 \text{kN/m}^3 \cdot 1.01 \text{m}) \cdot (2.01 - 1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)) }$

13) Safe Bearing Capacity given Bearing Capacity Factor

 $\boxed{\mathbf{f_s}} q_{sa} = \left(\frac{\left(C_s \cdot N_c \right) + \left(\sigma_s \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right)}{f_s} \right) + \sigma_s$

Open Calculator 🔄

 $\boxed{ 88.81393 \text{kN/m}^2 = \left(\frac{(5.0 \text{kPa} \cdot 9) + (45.9 \text{kN/m}^2 \cdot (2.01-1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)}{2.8} \right) + 45.9 \text{kN/m}^2 }$

14) Safe Bearing Capacity given Depth and Width of Footing

 $\boxed{\mathbf{f_s}} q_{sa} = \left(\frac{\left(C_s \cdot N_c \right) + \left(\left(\gamma \cdot D \right) \cdot \left(N_q - 1 \right) \right) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \right)}{f_s} \right) + \left(\gamma \cdot D \right) \right]$

Open Calculator 🖸

ex

$$51.09493 \text{kN/m}^2 = \left(\frac{(5.0 \text{kPa} \cdot 9) + ((18 \text{kN/m}^3 \cdot 1.01 \text{m}) \cdot (2.01 - 1)) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)}{2.8}\right) + (18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6) + (18 \text{kN/m}^3 \cdot 1.01 \text{m}) \cdot (2.01 - 1) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)}$$

15) Ultimate Bearing Capacity given Bearing Capacity Factor

fx $q_{\mathrm{f}} = (\mathrm{C_s \cdot N_c}) + (\gamma \cdot \mathrm{D \cdot N_q}) + \left(0.5 \cdot \gamma \cdot \mathrm{B \cdot N_{\gamma}}\right)$

Open Calculator

16) Unit Weight of Soil given Bearing Capacity Factor, Depth and Width of Footing

$$\gamma = rac{ ext{q}_{ ext{nf}} - (ext{C}_{ ext{s}} \cdot ext{N}_{ ext{c}})}{\left(0.5 \cdot ext{B} \cdot ext{N}_{ ext{v}}
ight) + \left(ext{D} \cdot (ext{N}_{ ext{q}} - 1)
ight)}$$

Open Calculator

$$\gamma = \frac{1}{\left(0.5 \cdot \mathrm{B} \cdot \mathrm{N}_{\gamma}\right) + \left(\mathrm{D} \cdot \left(\mathrm{N}_{\mathrm{q}} - 1\right)\right)}$$

$$= \frac{150 \text{kN/m}^2 - (5.0 \text{kPa} \cdot 9)}{(0.5 \cdot 2 \text{m} \cdot 1.6) + (1.01 \text{m} \cdot (2.01 - 1))}$$

17) Unit Weight of Soil given Depth and Width of Footing

$$\boxed{\text{fx}} \gamma = \frac{q_f - (C_s \cdot N_c)}{(D \cdot N_q) + \left(0.5 \cdot B \cdot N_\gamma\right)}$$

Open Calculator 2

18) Unit Weight of Soil given Factor of Safety and Safe Bearing Capacity

$$\gamma = \frac{(q_{sa} \cdot f_s) - ((C_s \cdot N_c))}{(N_q \cdot D) + \left(0.5 \cdot B \cdot N_\gamma\right)}$$

Open Calculator

19) Unit Weight of Soil given Net Ultimate Bearing Capacity

$$\gamma = \frac{q_{\rm nf} - ((C_s \cdot N_c) + (\sigma_s \cdot (N_q - 1)))}{0.5 \cdot B \cdot N_{\gamma}}$$

Open Calculator 🚰

$$\boxed{ 36.65062 kN/m^3 = \frac{150 kN/m^2 - \left(\left(5.0 kPa \cdot 9 \right) + \left(45.9 kN/m^2 \cdot \left(2.01 - 1 \right) \right) \right)}{0.5 \cdot 2m \cdot 1.6} }$$

20) Unit Weight of Soil given Safe Bearing Capacity 🗗

$$\gamma = \frac{\left(\left(q_{sa} \cdot f_s \right) - \left(f_s \cdot \sigma_s \right) \right) - \left(\left(C \cdot N_c \right) + \left(\sigma_s \cdot \left(N_q - 1 \right) \right) \right)}{0.5 \cdot B \cdot N_{\gamma}}$$

Open Calculator 2

$$\boxed{ 6.056875 kN/m^3 = \frac{\left(\left(70 kN/m^2 \cdot 2.8 \right) - \left(2.8 \cdot 45.9 kN/m^2 \right) \right) - \left(\left(1.27 kPa \cdot 9 \right) + \left(45.9 kN/m^2 \cdot \left(2.01 - 1 \right) \right) \right) }{0.5 \cdot 2m \cdot 1.6} }$$

 $0.5 \cdot 18 \text{kN/m}^3 \cdot 1.6$

21) Width of Footing given Bearing Capacity Factor and Depth of Footing 🗗

 $oxed{eta} B = rac{q_{nf} - ((C_s \cdot N_c) + ((\gamma \cdot D) \cdot (N_q - 1)))}{0.5 \cdot \gamma \cdot N_{\gamma}}$

Open Calculator

22) Width of Footing given Effective Surcharge

 $\left| \mathbf{F} \right| B = rac{q_{nf} - ((C_s \cdot N_c) + (\sigma_s \cdot (N_q - 1)))}{0.5 \cdot \gamma \cdot N_c}$

Open Calculator

23) Width of Footing given Factor of Safety and Safe Bearing Capacity 🗗

 $\mathbf{E} = \frac{\left(\left(\mathbf{q}_{\mathrm{sa}} \cdot \mathbf{f}_{\mathrm{s}} \right) - \left(\mathbf{f}_{\mathrm{s}} \cdot \left(\gamma \cdot \mathbf{D} \right) \right) \right) - \left(\left(\mathbf{C}_{\mathrm{s}} \cdot \mathbf{N}_{\mathrm{c}} \right) + \left(\left(\gamma \cdot \mathbf{D} \right) \cdot \left(\mathbf{N}_{\mathrm{q}} - 1 \right) \right) \right)}{0.5 \cdot \gamma \cdot \mathbf{N}_{\mathrm{s}}}$

Open Calculator

ex

 $5.675986m = \frac{\left((70kN/m^2 \cdot 2.8) - \left(2.8 \cdot (18kN/m^3 \cdot 1.01m) \right) \right) - \left((5.0kPa \cdot 9) + \left((18kN/m^3 \cdot 1.01m) \cdot (2.01 - 0.5 \cdot 18kN/m^3 \cdot 1.6 + 0.000 \right) \right)}{0.5 \cdot 18kN/m^3 \cdot 1.6}$

24) Width of Footing given Safe Bearing Capacity 🗗

 $\left| \mathbf{F} \right| \mathbf{B} = rac{\left(\left(\mathbf{q}_{sa} \cdot \mathbf{f}_{s}
ight) - \left(\mathbf{f}_{s} \cdot \mathbf{\sigma}_{s}
ight)
ight) - \left(\left(\mathbf{C} \cdot \mathbf{N}_{c}
ight) + \left(\mathbf{\sigma}_{s} \cdot \left(\mathbf{N}_{q} - 1
ight)
ight)
ight)}{0.5 \cdot \gamma \cdot \mathbf{N}_{\text{\tiny v}}}$

Open Calculator

 $\underbrace{ 0.672986 m = \frac{ ((70 \text{kN/m}^2 \cdot 2.8) - (2.8 \cdot 45.9 \text{kN/m}^2)) - ((1.27 \text{kPa} \cdot 9) + (45.9 \text{kN/m}^2 \cdot (2.01 - 1))) }_{0.5 - 10 \text{kN/m}} }$ $0.5 \cdot 18 kN/m^3 \cdot 1.6$

25) Width of Footing given Ultimate Bearing Capacity 🗗

 $\left| \mathbf{F} \right| \mathbf{B} = rac{\mathbf{q}_{fc} - ((\mathbf{C} \cdot \mathbf{N}_c) + (\gamma \cdot \mathbf{D}_{footing} \cdot \mathbf{N}_q))}{0.5 \cdot \gamma \cdot \mathbf{N}_{\text{--}}}$

Open Calculator

 $\boxed{ 1.6995 m = \frac{127.8 \text{kPa} - ((1.27 \text{kPa} \cdot 9) + (18 \text{kN/m}^3 \cdot 2.54 \text{m} \cdot 2.01))}{0.5 \cdot 18 \text{kN/m}^3 \cdot 1.6} }$

Variables Used

- **B** Width of Footing (Meter)
- C Cohesion in Soil as Kilopascal (Kilopascal)
- C_s Cohesion of Soil (Kilopascal)
- D Depth of Footing (Meter)
- D_{footing} Depth of Footing in Soil (Meter)
- fs Factor of Safety
- N_c Bearing Capacity Factor dependent on Cohesion
- N_a Bearing Capacity Factor dependent on Surcharge
- $\mathbf{N_{V}}$ Bearing Capacity Factor dependent on Unit Weight
- **q**_f Ultimate Bearing Capacity (Kilopascal)
- q_{fc} Ultimate Bearing Capacity in Soil (Kilopascal)
- qnf Net Ultimate Bearing Capacity (Kilonewton per Square Meter)
- **q**_{sa} Safe Bearing Capacity (Kilonewton per Square Meter)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- σ' Effective Surcharge (Pascal)
- σ_s Effective Surcharge in KiloPascal (Kilonewton per Square Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Pressure in Kilopascal (kPa), Kilonewton per Square Meter (kN/m²), Pascal (Pa) Pressure Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)

 Specific Weight Unit Conversion

Check other formula lists

Terzaghi's Analysis in Water Table is Below the Base
 Terzaghi's Analysis Purely Cohesive Soil formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/22/2024 | 6:43:04 AM UTC

Please leave your feedback here...

