

Bearing Capacity of Soil by Terzaghi's Analysis Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 31 Bearing Capacity of Soil by Terzaghi's Analysis Formulas

Bearing Capacity of Soil by Terzaghi's Analysis 🗗

1) Angle of Shearing Resistance given Weight of Wedge

$$\phi = a an igg(rac{\mathrm{W}_{\mathrm{we}} \cdot 4}{\gamma \cdot \left(\mathrm{B}
ight)^2}igg)$$

Open Calculator 🗗

ex
$$82.57338^{\circ} = a \tan \left(\frac{138.09 \mathrm{kN} \cdot 4}{18 \mathrm{kN/m^3} \cdot (2 \mathrm{m})^2} \right)$$

2) Cohesion of Soil given Loading Intensity by Terzaghi's Analysis

$$C = \frac{q - \left(\left(\frac{2 \cdot P_p}{B}\right) - \left(\frac{\gamma \cdot B \cdot \tan\left(\frac{\phi \cdot \pi}{180}\right)}{4}\right)\right)}{\tan\left(\frac{\phi \cdot \pi}{180}\right)}$$

Open Calculator 🖸

$$\underbrace{ 4.230063 \text{kPa} = \frac{26.8 \text{kPa} - \left(\left(\frac{2 \cdot 26.92 \text{kPa}}{2 \text{m}} \right) - \left(\frac{18 \text{kN/m}^3 \cdot 2 \text{m} \cdot \tan \left(\frac{82.57^\circ \cdot \pi}{180} \right)}{4} \right) \right)}{\tan \left(\frac{82.57^\circ \cdot \pi}{180} \right) } }$$

3) Downward Force on Wedge

$$egin{aligned} \mathbf{R}_{\mathrm{v}} = \mathbf{q} \cdot \mathbf{B} + \left(rac{\gamma \cdot \mathbf{B}^2 \cdot an(\phi) \cdot \left(rac{\pi}{180}
ight)}{4}
ight) \end{aligned}$$

Open Calculator 🚰

$$= 26.8 \text{kPa} \cdot 2 \text{m} + \left(\frac{18 \text{kN/m}^3 \cdot (2 \text{m})^2 \cdot \tan(82.57^\circ) \cdot \left(\frac{\pi}{180}\right)}{4} \right)$$

4) Loading Intensity using Bearing Capacity Factors

fx $|{
m q_b} = ({
m C}\cdot{
m N_c}) + ({
m \sigma_s}\cdot{
m N_q}) + \left(0.5\cdot{
m \gamma}\cdot{
m B}\cdot{
m N_\gamma}
ight)$

Open Calculator 🗗

 $= 129.2229 \text{kPa} = (4.23 \text{kPa} \cdot 1.93) + (45.9 \text{kN/m}^2 \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)$

5) Unit Weight of Soil given Weight of Wedge and Width of Footing 🗗

 $\gamma = rac{\mathrm{W_{we}} \cdot 4}{ an((\phi)) \cdot \mathrm{(B)}^2}$

Open Calculator

 $= \frac{138.09 \text{kN} \cdot 4}{\tan((82.57^{\circ})) \cdot (2\text{m})^{2}}$

6) Weight of Wedge given Width of Footing

 $\mathbf{K} = rac{ an(\phi) \cdot \gamma \cdot (\mathrm{B})^2}{4}$

Open Calculator

ex $138.0264 \mathrm{kN} = \frac{\mathrm{tan}(82.57\degree) \cdot 18 \mathrm{kN/m}^3 \cdot (2\mathrm{m})^2}{4}$

7) Width of Footing given Load Intensity

 $\mathbf{B} = rac{-\mathrm{q} + \sqrt{{(\mathrm{q})}^2 + \mathrm{R_v} \cdot \mathbf{\gamma} \cdot \mathrm{tan}(\mathbf{\phi})}}{rac{\mathbf{\gamma} \cdot \mathrm{tan}(\mathbf{\phi})}{2}}$

Open Calculator

 $= \frac{-26.8 \text{kPa} + \sqrt{\left(26.8 \text{kPa}\right)^2 + 56.109 \text{kN} \cdot 18 \text{kN/m}^3 \cdot \tan(82.57^\circ)}}{\frac{18 \text{kN/m}^3 \cdot \tan(82.57^\circ)}{2}}$

8) Width of Footing given Weight of Wedge

 $\mathbf{E} = \sqrt{rac{W \cdot 4}{ an\left(rac{\phi \cdot \pi}{180}
ight) \cdot \gamma}}$

Open Calculator 🗗

ex $0.297356 \mathrm{m} = \sqrt{\frac{10.01 \mathrm{kg} \cdot 4}{\tan\left(\frac{82.57^{\circ} \cdot \pi}{180}\right) \cdot 18 \mathrm{kN/m^3}}}$

Specialization of Terzaghi's Equations

9) Bearing Capacity depending on Shape Factors

fx $q_{
m s} = ({
m s}_{
m c} \cdot {
m C} \cdot {
m N}_{
m c}) + ({
m \sigma}_{
m s} \cdot {
m N}_{
m q}) + \left(0.5 \cdot {
m \gamma} \cdot {
m B} \cdot {
m N}_{
m \gamma} \cdot {
m s}_{
m \gamma}
ight)$

Open Calculator 🗗

ex

 $\boxed{152.2176 \text{kPa} = (1.7 \cdot 4.23 \text{kPa} \cdot 1.93) + (45.9 \text{kN/m}^2 \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 1.60)}$

10) Bearing Capacity Factor Dependent on Cohesion 🗗

 $N_{
m c} = rac{{
m q_f} - \left(\left({
m \sigma'} \cdot {
m N_q}
ight) + \left(0.5 \cdot {
m \gamma} \cdot {
m B} \cdot {
m N_{\gamma}} \cdot {
m s_{\gamma}}
ight)
ight)}{{
m s_c} \cdot {
m C}}$

Open Calculator 🗗

11) Bearing Capacity Factor Dependent on Unit Weight

 $\boxed{N_{\gamma} = \frac{q_f - ((s_c \cdot C \cdot N_c) + (\sigma' \cdot N_q))}{0.5 \cdot B \cdot \gamma \cdot s_{\gamma}}}$

Open Calculator 🗗

12) Bearing Capacity for Round Footing

fx $\left[q_{\mathrm{round}} = (1.3 \cdot \mathrm{C} \cdot \mathrm{N_c}) + (\sigma' \cdot \mathrm{N_q}) + \left(0.5 \cdot \gamma \cdot \mathrm{B} \cdot \mathrm{N_{\gamma}} \cdot 0.6 \right)
ight]$

Open Calculator

 $= 27.91317 \text{kPa} = (1.3 \cdot 4.23 \text{kPa} \cdot 1.93) + (10.0 \text{Pa} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 0.6)$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

13) Bearing Capacity for Square Footing

fx $\left| ext{q}_{ ext{square}} = (1.3 \cdot ext{C} \cdot ext{N}_{ ext{c}}) + (\sigma' \cdot ext{N}_{ ext{q}}) + \left(0.5 \cdot ext{\gamma} \cdot ext{B} \cdot ext{N}_{ ext{\gamma}} \cdot 0.8
ight)
ight|$

Open Calculator

 $= 33.67317 \text{kPa} = (1.3 \cdot 4.23 \text{kPa} \cdot 1.93) + (10.0 \text{Pa} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 0.8)$

14) Bearing Capacity for Strip Footing

 $\mathbf{q}_{\mathrm{strip}} = (\mathrm{C}\cdot\mathrm{N}_{\mathrm{c}}) + (\sigma'\cdot\mathrm{N}_{\mathrm{q}}) + \left(0.5\cdot\gamma\cdot\mathrm{B}\cdot\mathrm{N}_{\gamma}
ight)$

Open Calculator 🗗

 $= 36.984 \text{kPa} = (4.23 \text{kPa} \cdot 1.93) + (10.0 \text{Pa} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6)$

15) Cohesion of Soil depending on Shape Factors

 \mathbf{r} $\mathbf{C} = rac{\mathbf{q}_{\mathrm{f}} - \left(\left(\mathbf{\sigma}' \cdot \mathbf{N}_{\mathrm{q}}
ight) + \left(0.5 \cdot \mathbf{\gamma} \cdot \mathbf{B} \cdot \mathbf{N}_{\mathbf{\gamma}} \cdot \mathbf{s}_{\mathbf{\gamma}}
ight)
ight)}{\mathbf{s}_{\mathrm{c}} \cdot \mathbf{N}_{\mathrm{c}}}$

Open Calculator

16) Cohesion of Soil given Round Footing and Bearing Capacity

 $ext{C}_{
m r} = rac{{
m q}_{
m f} - \left(\left({
m \sigma}' \cdot {
m N}_{
m q}
ight) + \left(0.5 \cdot {
m \gamma} \cdot {
m B} \cdot {
m N}_{
m \gamma} \cdot 0.6
ight)
ight)}{1.3 \cdot {
m N}_{
m c}}$

Open Calculator

 $\boxed{ 17.01869 \text{kPa} = \frac{60 \text{kPa} - ((10.0 \text{Pa} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 0.6))}{1.3 \cdot 1.93} }$

17) Cohesion of Soil given Square Footing and Bearing Capacity

 $ag{C_{sq}} = rac{q_f - ig((\sigma' \cdot N_q) + ig(0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot 0.8 ig) ig)}{1.3 \cdot N_c}$

Open Calculator

18) Cohesion of Soil given Strip Footing and Bearing Capacity

 $oxed{\mathcal{C}_{\mathrm{st}}} = rac{q_{\mathrm{f}} - ig((\sigma' \cdot N_{\mathrm{q}}) + ig(0.5 \cdot \gamma \cdot B \cdot N_{\gamma} \cdot 1 ig) ig)}{1 \cdot N_{\mathrm{s}}}$

Open Calculator 🚰

 $\boxed{ 16.15539 \text{kPa} = \frac{60 \text{kPa} - ((10.0 \text{Pa} \cdot 2.01) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 1))}{1 \cdot 1.93} }$

19) Effective Surcharge given Round Footing and Bearing Capacity

 $\sigma_{
m round} = rac{{
m q_f} - ig((1.3 \cdot {
m C} \cdot {
m N_c}) + ig(0.5 \cdot \gamma \cdot {
m B} \cdot {
m N_{\gamma}} \cdot 0.6 ig) ig)}{{
m N_q}}$

Open Calculator

 $\boxed{ 15.9736 \text{kN/m}^2 = \frac{60 \text{kPa} - ((1.3 \cdot 4.23 \text{kPa} \cdot 1.93) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 0.6))}{2.01} }$

20) Effective Surcharge given Square Footing and Bearing Capacity

 $\sigma_{
m square} = rac{{
m q_f} - \left(\left(1.3 \cdot {
m C} \cdot {
m N_c}
ight) + \left(0.5 \cdot \gamma \cdot {
m B} \cdot {
m N_{\gamma}} \cdot 0.8
ight)
ight)}{{
m N_q}}$

Open Calculator

 $= \frac{13.10793 \text{kN/m}^2 = \frac{60 \text{kPa} - ((1.3 \cdot 4.23 \text{kPa} \cdot 1.93) + (0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 0.8))}{2.01} }$

21) Effective Surcharge given Strip Footing and Bearing Capacity

 $\sigma_{
m strip} = \left. rac{q_f - \left(\left(1 \cdot C \cdot N_c
ight) + \left(0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot 1
ight)
ight)}{N_q}
ight|$

Open Calculator

 $\boxed{ 11.46075 \text{kN/m}^2 = \frac{60 \text{kPa} - \left(\left(1 \cdot 4.23 \text{kPa} \cdot 1.93 \right) + \left(0.5 \cdot 18 \text{kN/m}^3 \cdot 2 \text{m} \cdot 1.6 \cdot 1 \right) \right) }{2.01} }$

22) Shape Factor Dependent on Cohesion

 $\mathbf{s}_{\mathrm{c}} = rac{\mathrm{q_f} - \left(\left(\sigma' \cdot \mathrm{N_q}
ight) + \left(0.5 \cdot \gamma \cdot \mathrm{B} \cdot \mathrm{N_{\gamma}} \cdot \mathrm{s_{\gamma}}
ight)
ight)}{\mathrm{N_c} \cdot \mathrm{C}}$

Open Calculator

23) Shape Factor Dependent on Unit Weight 🚰

 $\left. \textbf{fx} \right| s_{\gamma} = \frac{q_f - ((s_c \cdot C \cdot N_c) + (\sigma' \cdot N_q))}{0.5 \cdot B \cdot \gamma \cdot N_{\gamma}} \right|$

Open Calculator 🗗

 $\boxed{ 1.600739 = \frac{60 \text{kPa} - ((1.7 \cdot 4.23 \text{kPa} \cdot 1.93) + (10.0 \text{Pa} \cdot 2.01))}{0.5 \cdot 2 \text{m} \cdot 18 \text{kN/m}^3 \cdot 1.6} }$

24) Unit Weight of Soil given Round Footing and Bearing Capacity

 $\gamma = \frac{q_s - ((1.3 \cdot C_r \cdot N_c) + (\sigma_{round} \cdot N_q))}{0.5 \cdot N_\gamma \cdot B_{round} \cdot 0.6}$

Open Calculator

 $= \frac{13.17296 \text{kN/m}^3 = \frac{110.819 \text{kPa} - ((1.3 \cdot 17.01 \text{kPa} \cdot 1.93) + (15.97 \text{kN/m}^2 \cdot 2.01))}{0.5 \cdot 1.6 \cdot 5.7 \text{m} \cdot 0.6} }$

25) Unit Weight of Soil given Shape Factor

 $\gamma = rac{q_f - ((s_c \cdot C \cdot N_c) + (\sigma' \cdot N_q))}{0.5 \cdot N_\gamma \cdot B \cdot s_\gamma}$

Open Calculator 🗗

 $\boxed{ 18.00831 \text{kN/m}^3 = \frac{60 \text{kPa} - ((1.7 \cdot 4.23 \text{kPa} \cdot 1.93) + (10.0 \text{Pa} \cdot 2.01))}{0.5 \cdot 1.6 \cdot 2 \text{m} \cdot 1.60} }$

26) Unit Weight of Soil given Square Footing and Bearing Capacity

 $\gamma = rac{ ext{q}_{ ext{s}} - ig((1.3 \cdot ext{C}_{ ext{sq}} \cdot ext{N}_{ ext{c}}) + ig(\sigma_{ ext{square}} \cdot ext{N}_{ ext{q}}ig)ig)}{0.5 \cdot ext{N}_{\gamma} \cdot ext{B}_{ ext{square}} \cdot 0.8}$

Open Calculator

 $\boxed{ 17.3611 \text{kN/m}^3 = \frac{110.819 \text{kPa} - \left(\left(1.3 \cdot 14.72 \text{kPa} \cdot 1.93 \right) + \left(13.10 \text{kN/m}^2 \cdot 2.01 \right) \right) }{0.5 \cdot 1.6 \cdot 4.28 \text{m} \cdot 0.8} }$

27) Unit Weight of Soil given Strip Footing and Bearing Capacity

 $\gamma = rac{ ext{q}_{ ext{s}} - ig((1 \cdot ext{C}_{ ext{st}} \cdot ext{N}_{ ext{c}}) + ig(\sigma_{ ext{strip}} \cdot ext{N}_{ ext{q}}ig)ig)}{0.5 \cdot ext{N}_{ ext{v}} \cdot ext{B}_{ ext{strip}} \cdot 1}$

Open Calculator

 $\boxed{ 19.71271 \text{kN/m}^3 = \frac{110.819 \text{kPa} - ((1 \cdot 16.15 \text{kPa} \cdot 1.93) + (11.46 \text{kN/m}^2 \cdot 2.01))}{0.5 \cdot 1.6 \cdot 3.59 \text{m} \cdot 1} }$

28) Width of Footing given Round Footing and Bearing Capacity 🗗

 $\left. \mathbf{E} \mathbf{E}_{round} = rac{\mathbf{q}_f - ((1.3 \cdot C \cdot N_c) + (\sigma' \cdot N_q))}{0.5 \cdot N_\gamma \cdot \gamma \cdot 0.6}
ight|$

Open Calculator

29) Width of Footing given Shape Factor

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

Open Calculator

30) Width of Footing given Square Footing and Bearing Capacity

 $oldsymbol{eta} \mathbf{B}_{\mathrm{square}} = rac{\mathbf{q}_{\mathrm{f}} - ((1.3 \cdot \mathbf{C} \cdot \mathbf{N}_{\mathrm{c}}) + (\sigma' \cdot \mathbf{N}_{\mathrm{q}}))}{0.5 \cdot \mathbf{N}_{\scriptscriptstyle{\gamma}} \cdot \gamma \cdot 0.8}$

Open Calculator 🗗

31) Width of Footing given Strip Footing and Bearing Capacity 🗗

 $egin{equation} egin{equation} \mathbf{E}_{\mathrm{strip}} = rac{\mathbf{q}_{\mathrm{f}} - ((1 \cdot \mathbf{C} \cdot \mathbf{N}_{\mathrm{c}}) + (\sigma' \cdot \mathbf{N}_{\mathrm{q}}))}{0.5 \cdot \mathbf{N}_{\gamma} \cdot \gamma \cdot 1} \end{split}$

Open Calculator

Variables Used

- **B** Width of Footing (*Meter*)
- Bround Width of Footing for Round Footing (Meter)
- B_{square} Width of Footing for Square Footing (Meter)
- B_{strip} Width of Footing for Strip Footing (Meter)
- C Cohesion (Kilopascal)
- C_r Cohesion of Soil given Round Footing (Kilopascal)
- C_{sq} Cohesion of Soil given Square Footing (Kilopascal)
- C_{st} Cohesion of Soil given Strip Footing (Kilopascal)
- N_c Bearing Capacity Factor dependent on Cohesion
- Na Bearing Capacity Factor dependent on Surcharge
- N_v Bearing Capacity Factor dependent on Unit Weight
- Pp Passive Earth Pressure (Kilopascal)
- **q** Load Intensity (Kilopascal)
- **q**_b Loading Intensity with Bearing Capacity Factors (Kilopascal)
- q_f Ultimate Bearing Capacity (Kilopascal)
- **q**round Bearing Capacity for Round Footing (Kilopascal)
- q_s Bearing Capacity (Kilopascal)
- q_{square} Bearing Capacity for Square Footing (Kilopascal)
- **q**strip Bearing Capacity for Strip Footing (Kilopascal)
- R_v Total Downward Force in Soil (Kilonewton)
- **s**_c Shape Factor dependent on Cohesion
- $\mathbf{s_V}$ Shape Factor Dependent on Unit Weight
- W Weight of Wedge (Kilogram)
- Wwe Weight of Wedge in Kilonewton (Kilonewton)
- V Unit Weight of Soil (Kilonewton per Cubic Meter)
- σ' Effective Surcharge (Pascal)
- σ_{round} Effective Surcharge given Round Footing (Kilonewton per Square Meter)
- σ_s Effective Surcharge (KN/m2) (Kilonewton per Square Meter)

- σ_{square} Effective Surcharge given Square Footing (Kilonewton per Square Meter)
- σ_{strip} Effective Surcharge given Strip Footing (Kilonewton per Square Meter)
- **φ** Angle of Shearing Resistance (*Degree*)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: atan, atan(Number)

 Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Pressure in Kilopascal (kPa), Kilonewton per Square Meter (kN/m²), Pascal (Pa) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)

 Specific Weight Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ Soils Formulas
- Bearing Capacity of Cohesive Soil Formulas
- Bearing Capacity of Non-cohesive Soil Formulas
- Bearing Capacity of Soils Formulas
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas
- Foundation Stability Analysis Formulas
- Atterberg Limits Formulas
- Bearing Capacity of Soil by Terzaghi's Analysis Formulas
- Compaction of Soil Formulas
- Earth Moving Formulas
- Lateral Pressure for Cohesive and Non Cohesive Soil Formulas
- Minimum Depth of Foundation by Rankine's Analysis Formulas

- Pile Foundations Formulas
- Porosity of Soil Sample Formulas
- Scraper Production Formulas
- Seepage Analysis Formulas
- Slope Stability Analysis using Bishops
 Method Formulas
- Slope Stability Analysis using Culman's Method Formulas
- Soil Origin and Its Properties Formulas
- Specific Gravity of Soil Formulas
- Stability Analysis of Infinite Slopes Formulas
- Stability Analysis of Infinite Slopes in Prism Formulas
- Vibration Control in Blasting Formulas
- Void Ratio of Soil Sample Formulas
- Water Content of Soil and Related Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/22/2024 | 5:56:20 AM UTC

Please leave your feedback here..

