

Principal Stresses Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Principal Stresses Formulas

Principal Stresses 2

1) Angle of Obliquity

$$\phi = a an\!\left(rac{ au}{\sigma_{
m n}}
ight)$$

Open Calculator

$$= a \tan \left(rac{2.4 ext{MPa}}{0.250 ext{MPa}}
ight)$$

2) Major Principal Stress if Member is Subjected to Two Perpendicular Direct Stress and Shear Stress

$$\sigma_{
m major} = rac{\sigma_{
m x}+\sigma_{
m y}}{2} + \sqrt{\left(rac{\sigma_{
m x}-\sigma_{
m y}}{2}
ight)^2 + au^2}$$

Open Calculator 🚰

3) Maximum Axial Force

$$extstyle \mathbf{P}_{\mathrm{axial}} = \mathbf{\sigma} \cdot \mathbf{A}$$

Open Calculator

$$0.0768 \mathrm{kN} = 0.012 \mathrm{MPa} \cdot 6400 \mathrm{mm}^2$$

4) Minor Principal Stress if Member is Subjected to Two Perpendicular Direct Stress and Shear Stress

$$\sigma_{
m minor} = rac{\sigma_{
m x}+\sigma_{
m y}}{2} - \sqrt{\left(rac{\sigma_{
m x}-\sigma_{
m y}}{2}
ight)^2 + au^2}$$

$$= \frac{2}{1.754683 \text{MPa}} = \frac{0.5 \text{MPa} + 0.8 \text{MPa}}{2} - \sqrt{\left(\frac{0.5 \text{MPa} - 0.8 \text{MPa}}{2}\right)^2 + (2.4 \text{MPa})^2}$$

5) Resultant Stress on Oblique Section given Stress in Perpendicular Directions

$$\sigma_{
m R} = \sqrt{\sigma_{
m n}^2 + au^2}$$

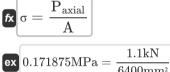
Open Calculator

$$\mathbf{ex}$$
 2.412986MPa = $\sqrt{(0.250\text{MPa})^2 + (2.4\text{MPa})^2}$

6) Safe Stress given Safe Value of Axial Pull

$$\sigma = rac{\mathrm{P_{safe}}}{\mathrm{A}}$$

Open Calculator


7) Safe Value of Axial Pull

fx
$$P_{safe} = \sigma_w \cdot A$$

Open Calculator

$$\texttt{ex} \ 38.4 \text{kN} = 6 \text{MPa} \cdot 6400 \text{mm}^2$$

8) Stress along Maximum Axial Force

Open Calculator

Normal Stress

9) Equivalent Stress by Distortion Energy Theory

$$\sigma_{
m e} = rac{1}{\sqrt{2}} \cdot \sqrt{\left(\sigma_1 - \sigma_2
ight)^2 + \left(\sigma_2 - \sigma_3
ight)^2 + \left(\sigma_3 - \sigma_1
ight)^2}$$

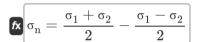
$$41.05127 \mathrm{N/m^2} = rac{1}{\sqrt{2}} \cdot \sqrt{\left(87.5 - 51.43 \mathrm{N/m^2}
ight)^2 + \left(51.43 \mathrm{N/m^2} - 96.1 \mathrm{N/m^2}
ight)^2 + \left(96.1 \mathrm{N/m^2} - 87.5
ight)^2}$$

10) Normal Stress across Oblique Section 🚰

 $\sigma_{
m n} = \sigma \cdot \left(\cos (heta_{
m oblique})
ight)^2$

Open Calculator 2

 $0.011196 \mathrm{MPa} = 0.012 \mathrm{MPa} \cdot (\cos(15^{\circ}))^2$


11) Normal Stress for Principal Planes at Angle of 0 Degrees given Major and Minor Tensile Stress

$$\sigma_{
m n}=rac{\sigma_1+\sigma_2}{2}+rac{\sigma_1-\sigma_2}{2}$$

Open Calculator

 $extbf{ex} 124 ext{MPa} = rac{124 ext{MPa} + 48 ext{MPa}}{2} + rac{124 ext{MPa} - 48 ext{MPa}}{2}$

12) Normal Stress for Principal Planes at Angle of 90 degrees

Open Calculator

 $oxed{ex} \left[48 ext{MPa} = rac{124 ext{MPa} + 48 ext{MPa}}{2} - rac{124 ext{MPa} - 48 ext{MPa}}{2}
ight]$

13) Normal Stress for Principal Planes when Planes are at Angle of 0 Degree

$$\sigma_{
m n}=rac{\sigma_1+\sigma_2}{2}+rac{\sigma_1-\sigma_2}{2}$$

Open Calculator

 $extbf{ex} 124 ext{MPa} = rac{124 ext{MPa} + 48 ext{MPa}}{2} + rac{124 ext{MPa} - 48 ext{MPa}}{2}$

14) Normal Stress on Oblique Section given Stress in Perpendicular Directions

$$\sigma_{
m n} = rac{\sigma_1 + \sigma_2}{2} + rac{\sigma_1 - \sigma_2}{2} \cdot \cos(2 \cdot heta_{
m oblique})$$

Open Calculator

 $\boxed{ 118.909 \text{MPa} = \frac{124 \text{MPa} + 48 \text{MPa}}{2} + \frac{124 \text{MPa} - 48 \text{MPa}}{2} \cdot \cos(2 \cdot 15^\circ) }$

15) Normal Stress using Obliquity 🚰

$$\sigma_{
m n} = rac{ au}{ an(\phi)}$$

Open Calculator

 \mathbf{ex} $2.4\mathrm{MPa} = \frac{2.4\mathrm{MPa}}{\tan(45\degree)}$

© calculatoratoz.com. A softusvista inc. venture!

16) Stress Amplitude

$$\sigma_{
m a} = rac{\sigma_{
m max} - \sigma_{
m min}}{2}$$

Open Calculator

Shear Stress

17) Condition for Maximum or Minimum Shear Stress given Member under Direct and Shear Stress 🛂

Open Calculator 🚰

$$heta_{ ext{plane}} = rac{1}{2} \cdot a an igg(rac{\sigma_{ ext{x}} - \sigma_{ ext{y}}}{2 \cdot au}igg)$$

$$oxed{ex} ext{-1.788167}^\circ = rac{1}{2} \cdot a anigg(rac{0.5 ext{MPa} - 0.8 ext{MPa}}{2 \cdot 2.4 ext{MPa}}igg)$$

18) Maximum Shear Stress given Major and Minor Tensile Stress

fx $au_{ ext{max}} = rac{\sigma_1 - \sigma_2}{2}$

Open Calculator 🚰

19) Maximum Shear Stress given Member is under Direct and Shear Stress 🗗

 $au_{ ext{max}} = rac{\sqrt{\left(ext{s}_{ ext{x}} - ext{s}_{ ext{y}}
ight)^2 + 4 \cdot au^2}}{2}$

Open Calculator 2

20) Shear Stress using Obliquity

fx
$$au = an(\phi) \cdot \sigma_n$$

$$\textbf{ex} \ 0.25 \text{MPa} = \tan(45\degree) \cdot 0.250 \text{MPa}$$

Tangential Stress

21) Tangential Stress across Oblique Section

$$\sigma_{
m t} = rac{\sigma}{2} \cdot \sin ig(2 \cdot heta_{
m oblique} ig)$$

Open Calculator

22) Tangential Stress on Oblique Section given Stress in Perpendicular Directions

Variables Used

- A Area of Cross-Section (Square Millimeter)
- Paxial Maximum Axial Force (Kilonewton)
- P_{safe} Safe Value of Axial Pull (Kilonewton)
- θoblique Angle made by Oblique Section with Normal (Degree)
- θ_{plane} Plane Angle (Degree)
- σ Stress in Bar (Megapascal)
- σ₁ Normal Stress 1
- σ₁ Major Tensile Stress (Megapascal)
- σ₂ Normal Stress 2 (Newton per Square Meter)
- σ₂ Minor Tensile Stress (Megapascal)
- σ₃ Normal Stress 3 (Newton per Square Meter)
- σ_a Stress Amplitude (Newton per Square Meter)
- σ_P Equivalent Stress (Newton per Square Meter)
- σ_{maior} Major Principal Stress (Megapascal)
- σ_{max} Maximum Stress at Crack Tip (Newton per Square Meter)
- σ_{min} Minimum Stress (Newton per Square Meter)
- σ_{minor} Minor Principal Stress (Megapascal)
- σ_n Normal Stress (Megapascal)
- σ_R Resultant Stress (Megapascal)
- σ_t Tangential Stress (Megapascal)
- σ_w Safe Stress (Megapascal)
- σ_x Stress acting along x-direction (Megapascal)
- σ_v Stress acting along y-direction (Megapascal)
- Φ Angle of Obliquity (Degree)
- τ Shear Stress (Megapascal)
- $au_{ extbf{max}}$ Maximum Shear Stress (Megapascal)

Constants, Functions, Measurements used

- Function: atan, atan(Number)

 Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle)
 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Area in Square Millimeter (mm²)

 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa), Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion ✓
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

Principal Stresses Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/1/2024 | 9:05:36 AM UTC

Please leave your feedback here...

