
calculatoratoz.com

unitsconverters.com

Important Formulas of Tetrahedron

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 Important Formulas of Tetrahedron

Important Formulas of Tetrahedron

Edge Length of Tetrahedron

1) Edge Length of Tetrahedron given Circumsphere Radius

$\mathrm{fx}_{\mathrm{e}}=2 \cdot \sqrt{\frac{2}{3}} \cdot \mathrm{r}_{\mathrm{c}}$
ex $9.797959 \mathrm{~m}=2 \cdot \sqrt{\frac{2}{3}} \cdot 6 \mathrm{~m}$
2) Edge Length of Tetrahedron given Face Area
$\mathrm{fx} \mathrm{l}_{\mathrm{e}}=\sqrt{\frac{4 \cdot \mathrm{~A}_{\text {Face }}}{\sqrt{3}}}$
ex $10.19427 \mathrm{~m}=\sqrt{\frac{4 \cdot 45 \mathrm{~m}^{2}}{\sqrt{3}}}$
3) Edge Length of Tetrahedron given Total Surface Area
$\mathrm{fx}_{\mathrm{e}}=\sqrt{\frac{\mathrm{TSA}}{\sqrt{3}}}$
ex $9.907045 \mathrm{~m}=\sqrt{\frac{170 \mathrm{~m}^{2}}{\sqrt{3}}}$
4) Edge Length of Tetrahedron given Volume
$f \mathrm{f} \mathrm{l}_{\mathrm{e}}=(6 \cdot \sqrt{2} \cdot \mathrm{~V})^{\frac{1}{3}}$

$$
\text { ex } 10.06041 \mathrm{~m}=\left(6 \cdot \sqrt{2} \cdot 120 \mathrm{~m}^{3}\right)^{\frac{1}{3}}
$$

Height of Tetrahedron

5) Height of Tetrahedron

$f \mathrm{f} h=\sqrt{\frac{2}{3}} \cdot l_{e}$
$\mathrm{ex} 8.164966 \mathrm{~m}=\sqrt{\frac{2}{3}} \cdot 10 \mathrm{~m}$
6) Height of Tetrahedron given Circumsphere Radius
$f \mathrm{x}=\frac{4}{3} \cdot \mathrm{r}_{\mathrm{c}}$
ex $8 \mathrm{~m}=\frac{4}{3} \cdot 6 \mathrm{~m}$
7) Height of Tetrahedron given Face Area
$f_{x} h=\sqrt{\frac{8 \cdot A_{\text {Face }}}{3 \cdot \sqrt{3}}}$
$\mathrm{ex} 8.323583 \mathrm{~m}=\sqrt{\frac{8 \cdot 45 \mathrm{~m}^{2}}{3 \cdot \sqrt{3}}}$
8) Height of Tetrahedron given Volume
$f \times h=\sqrt{\frac{2}{3}} \cdot(6 \cdot \sqrt{2} \cdot V)^{\frac{1}{3}}$
$\operatorname{ex} 8.214293 \mathrm{~m}=\sqrt{\frac{2}{3}} \cdot\left(6 \cdot \sqrt{2} \cdot 120 \mathrm{~m}^{3}\right)^{\frac{1}{3}}$

Radius of Tetrahedron

9) Circumsphere Radius of Tetrahedron
$f_{x} r_{c}=\frac{1}{2} \cdot \sqrt{\frac{3}{2}} \cdot l_{e}$

$$
\mathrm{ex} 6.123724 \mathrm{~m}=\frac{1}{2} \cdot \sqrt{\frac{3}{2}} \cdot 10 \mathrm{~m}
$$

10) Circumsphere Radius of Tetrahedron given Height

$$
f \mathrm{x} \mathrm{r}_{\mathrm{c}}=\frac{3}{4} \cdot \mathrm{~h}
$$

ex $6 \mathrm{~m}=\frac{3}{4} \cdot 8 \mathrm{~m}$
11) Insphere Radius of Tetrahedron

ex $2.041241 \mathrm{~m}=\frac{10 \mathrm{~m}}{2 \cdot \sqrt{6}}$
12) Insphere Radius of Tetrahedron given Face Area
$\mathrm{fx} \mathrm{r}_{\mathrm{i}}=\frac{\sqrt{\frac{4 \cdot \mathrm{~A}_{\mathrm{Face}}}{\sqrt{3}}}}{2 \cdot \sqrt{6}}$
ex $2.080896 \mathrm{~m}=\frac{\sqrt{\frac{4 \cdot 45 \mathrm{~m}^{2}}{\sqrt{3}}}}{2 \cdot \sqrt{6}}$
13) Midsphere Radius of Tetrahedron
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{r}}=\frac{\mathrm{l}_{\mathrm{e}}}{2 \cdot \sqrt{2}}$
Open Calculator
ex $3.535534 \mathrm{~m}=\frac{10 \mathrm{~m}}{2 \cdot \sqrt{2}}$
14) Midsphere Radius of Tetrahedron given Insphere Radius
$f \mathrm{x} \mathrm{r}_{\mathrm{m}}=\sqrt{3} \cdot \mathrm{r}_{\mathrm{i}}$
ex $3.464102 \mathrm{~m}=\sqrt{3} \cdot 2 \mathrm{~m}$

Surface Area of Tetrahedron ©

15) Face Area of Tetrahedron
$f \times \mathrm{A}_{\text {Face }}=\frac{\sqrt{3}}{4} \cdot l_{\mathrm{e}}^{2}$
Open Calculator
ex $43.30127 \mathrm{~m}^{2}=\frac{\sqrt{3}}{4} \cdot(10 \mathrm{~m})^{2}$
16) Face Area of Tetrahedron given Insphere Radius

$f \times A_{\text {Face }}=6 \cdot \sqrt{3} \cdot r_{i}^{2}$
Open Calculator
ex $41.56922 \mathrm{~m}^{2}=6 \cdot \sqrt{3} \cdot(2 \mathrm{~m})^{2}$
17) Total Surface Area of Tetrahedron
$f \mathrm{TSA}=\sqrt{3} \cdot \mathrm{l}_{\mathrm{e}}^{2}$
Open Calculator
ex $173.2051 \mathrm{~m}^{2}=\sqrt{3} \cdot(10 \mathrm{~m})^{2}$
18) Total Surface Area of Tetrahedron given Circumsphere Radius
fx $\mathrm{TSA}=\sqrt{3} \cdot\left(\frac{2 \cdot \sqrt{2} \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{3}}\right)^{2}$
ex $166.2769 \mathrm{~m}^{2}=\sqrt{3} \cdot\left(\frac{2 \cdot \sqrt{2} \cdot 6 \mathrm{~m}}{\sqrt{3}}\right)^{2}$
19) Total Surface Area of Tetrahedron given Height
$f \mathrm{TSA}=\sqrt{3} \cdot\left(\sqrt{\frac{3}{2}} \cdot \mathrm{~h}\right)^{2}$
ex $166.2769 \mathrm{~m}^{2}=\sqrt{3} \cdot\left(\sqrt{\frac{3}{2}} \cdot 8 \mathrm{~m}\right)^{2}$
20) Total Surface Area of Tetrahedron given Volume
$\mathrm{fx} \mathrm{TSA}=\sqrt{3} \cdot\left(\frac{12 \cdot \mathrm{~V}}{\sqrt{2}}\right)^{\frac{2}{3}}$
ex $175.3042 \mathrm{~m}^{2}=\sqrt{3} \cdot\left(\frac{12 \cdot 120 \mathrm{~m}^{3}}{\sqrt{2}}\right)^{\frac{2}{3}}$

Volume of Tetrahedron

21) Volume of Tetrahedron

$\mathrm{fx} \mathrm{V}=\frac{\mathrm{l}_{\mathrm{e}}^{3}}{6 \cdot \sqrt{2}}$
$\mathrm{ex} 117.8511 \mathrm{~m}^{3}=\frac{(10 \mathrm{~m})^{3}}{6 \cdot \sqrt{2}}$

22) Volume of Tetrahedron given Face Area

$f_{\mathrm{x}} \mathrm{V}=\frac{\left(\frac{4 \cdot \mathrm{~A}_{\text {Face }}}{\sqrt{3}}\right)^{\frac{3}{2}}}{6 \cdot \sqrt{2}}$
$\operatorname{ex} 124.8537 \mathrm{~m}^{3}=\frac{\left(\frac{4 \cdot 45 \mathrm{~m}^{2}}{\sqrt{3}}\right)^{\frac{3}{2}}}{6 \cdot \sqrt{2}}$
23) Volume of Tetrahedron given Height
$f \times V=\frac{\left(\sqrt{\frac{3}{2}} \cdot h\right)^{3}}{6 \cdot \sqrt{2}}$
Open Calculator
$\operatorname{ex} 110.8513 \mathrm{~m}^{3}=\frac{\left(\sqrt{\frac{3}{2}} \cdot 8 \mathrm{~m}\right)^{3}}{6 \cdot \sqrt{2}}$
24) Volume of Tetrahedron given Total Surface Area
$\mathrm{fx} \mathrm{V}=\frac{\sqrt{2}}{12} \cdot\left(\frac{\mathrm{TSA}}{\sqrt{3}}\right)^{\frac{3}{2}}$
ex $114.5951 \mathrm{~m}^{3}=\frac{\sqrt{2}}{12} \cdot\left(\frac{170 \mathrm{~m}^{2}}{\sqrt{3}}\right)^{\frac{3}{2}}$

Variables Used

- Aface Face Area of Tetrahedron (Square Meter)
- \mathbf{h} Height of Tetrahedron (Meter)
- $\mathbf{I}_{\mathbf{e}}$ Edge Length of Tetrahedron (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumsphere Radius of Tetrahedron (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Insphere Radius of Tetrahedron (Meter)
- $\mathbf{r}_{\mathbf{m}}$ Midsphere Radius of Tetrahedron (Meter)
- TSA Total Surface Area of Tetrahedron (Square Meter)
- V Volume of Tetrahedron (Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Cube Formulas \mathcal{G}
- Dodecahedron Formulas
- Icosahedron Formulas
- Octahedron Formulas
- Tetrahedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

