
calculatoratoz.com

AC Circuit Design Formulas

Calculators!

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 AC Circuit Design Formulas

AC Circuit Design ©

1) Capacitance for Parallel RLC Circuit using Q Factor
$f \times \mathrm{C}=\frac{\mathrm{L} \cdot \mathrm{Q}_{\|}^{2}}{\mathrm{R}^{2}}$
Open Calculator
ex $349.3578 \mu \mathrm{~F}=\frac{0.79 \mathrm{mH} \cdot(39.9)^{2}}{(60 \Omega)^{2}}$
2) Capacitance for Series RLC Circuit given Q Factor
$f \mathrm{fx}=\frac{\mathrm{L}}{\mathrm{Q}_{\mathrm{se}}^{2} \cdot \mathrm{R}^{2}}$
Open Calculator
ex $351.1111 \mu \mathrm{~F}=\frac{0.79 \mathrm{mH}}{(0.025)^{2} \cdot(60 \Omega)^{2}}$
3) Capacitance given Cut off Frequency
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{C}}=\frac{1}{2 \cdot \mathrm{R} \cdot \pi \cdot \mathrm{f}_{\mathrm{c}}}$
Open Calculator
ex $350.4072 \mu \mathrm{~F}=\frac{1}{2 \cdot 60 \Omega \cdot \pi \cdot 7.57 \mathrm{~Hz}}$
4) Capacitance using Time Constant

ex $350 \mu \mathrm{~F}=\frac{21 \mathrm{~ms}}{60 \Omega}$
5) Complex Power
$f \mathrm{x} S=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$
ex $270.5199 \mathrm{VA}=\sqrt{(235 \mathrm{~W})^{2}+(134 \mathrm{VAR})^{2}}$
6) Complex Power given Power Factor

$$
f \mathrm{x}=\frac{\mathrm{P}}{\cos (\Phi)}
$$

ex $271.3546 \mathrm{VA}=\frac{235 \mathrm{~W}}{\cos \left(30^{\circ}\right)}$

7) Current using Complex Power

$\mathrm{fx} I=\sqrt{\frac{\mathrm{S}}{\mathrm{Z}}}$
Open Calculator
$\operatorname{ex} 2.09723 \mathrm{~A}=\sqrt{\frac{270.5 \mathrm{VA}}{61.5 \Omega}}$
8) Current using Power Factor

ex $2.101968 \mathrm{~A}=\frac{235 \mathrm{~W}}{0.86 \cdot 130 \mathrm{~V}}$
9) Cut Off Frequency for RC circuit
$f \mathrm{fx} \mathrm{f}_{\mathrm{c}}=\frac{1}{2 \cdot \pi \cdot \mathrm{C} \cdot \mathrm{R}}$
Open Calculator
ex $7.578807 \mathrm{~Hz}=\frac{1}{2 \cdot \pi \cdot 350 \mu \mathrm{~F} \cdot 60 \Omega}$
10) Electric Current using Reactive Power
$f_{\mathrm{x}} \mathrm{I}=\frac{\mathrm{Q}}{\mathrm{V} \cdot \sin (\Phi)}$
Open Calculator
ex $2.061538 \mathrm{~A}=\frac{134 \mathrm{VAR}}{130 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)}$
11) Electric Current using Real Power
$f_{x} \mathrm{I}=\frac{\mathrm{P}}{\mathrm{V} \cdot \cos (\Phi)}$
Open Calculator
ex $2.087343 \mathrm{~A}=\frac{235 \mathrm{~W}}{130 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)}$

开

12) Electrical Angle

$f \mathrm{fx} \theta_{\mathrm{e}}=\left(\frac{\mathrm{N}_{\mathrm{p}}}{2}\right) \cdot \theta_{\mathrm{m}}$
ex $160^{\circ}=\left(\frac{4}{2}\right) \cdot 80^{\circ}$
13) Frequency using Time Period
$f \times \omega_{\mathrm{n}}=\frac{1}{2 \cdot \pi \cdot \mathrm{~T}}$
Open Calculator
ex $0.050207 \mathrm{~Hz}=\frac{1}{2 \cdot \pi \cdot 3.17}$
14) Impedance given Complex Power and Current
$f \mathrm{fz}=\frac{\mathrm{S}}{\mathrm{I}^{2}}$
Open Calculator ©
ex $61.33787 \Omega=\frac{270.5 \mathrm{VA}}{(2.1 \mathrm{~A})^{2}}$
15) Impedance given Complex Power and Voltage
$f \mathrm{f} Z=\frac{\mathrm{V}^{2}}{\mathrm{~S}}$
ex $62.47689 \Omega=\frac{(130 \mathrm{~V})^{2}}{270.5 \mathrm{VA}}$
16) Inductance for Parallel RLC Circuit using Q Factor

$$
f \mathrm{fx}=\frac{\mathrm{C} \cdot \mathrm{R}^{2}}{\mathrm{Q}_{\|}^{2}}
$$

ex $0.791452 \mathrm{mH}=\frac{350 \mu \mathrm{~F} \cdot(60 \Omega)^{2}}{(39.9)^{2}}$
17) Inductance for Series RLC Circuit given Q Factor \mathcal{Z}
$f \mathrm{fx}=\mathrm{C} \cdot \mathrm{Q}_{\mathrm{se}}^{2} \cdot \mathrm{R}^{2}$
Open Calculator
ex $0.7875 \mathrm{mH}=350 \mu \mathrm{~F} \cdot(0.025)^{2} \cdot(60 \Omega)^{2}$
18) Line to Neutral Current using Reactive Power
$f \mathrm{fx} \mathrm{I}_{\mathrm{ln}}=\frac{\mathrm{Q}}{3 \cdot \mathrm{~V}_{\ln } \cdot \sin (\Phi)}$
Open Calculator
ex $1.296565 \mathrm{~A}=\frac{134 \mathrm{VAR}}{3 \cdot 68.9 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)}$
19) Line to Neutral Current using Real Power
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}_{\mathrm{ln}}=\frac{\mathrm{P}}{3 \cdot \cos (\Phi) \cdot V_{\ln }}$
Open Calculator
ex $1.312795 \mathrm{~A}=\frac{235 \mathrm{~W}}{3 \cdot \cos \left(30^{\circ}\right) \cdot 68.9 \mathrm{~V}}$
20) Line to Neutral Voltage using Reactive Power
$\mathrm{fx} \mathrm{V}_{\ln }=\frac{\mathrm{Q}}{3 \cdot \sin (\Phi) \cdot \mathrm{I}_{\ln }}$
ex $68.71795 \mathrm{~V}=\frac{134 \mathrm{VAR}}{3 \cdot \sin \left(30^{\circ}\right) \cdot 1.3 \mathrm{~A}}$
21) Line to Neutral Voltage using Real Power
$f \times V_{\ln }=\frac{\mathrm{P}}{3 \cdot \cos (\Phi) \cdot \mathrm{I}_{\mathrm{ln}}}$
Open Calculator 〔

$$
\operatorname{ex} 69.57811 \mathrm{~V}=\frac{235 \mathrm{~W}}{3 \cdot \cos \left(30^{\circ}\right) \cdot 1.3 \mathrm{~A}}
$$

22) Power Factor given Power

23) Power Factor given Power Factor Angle
$f \times \cos \Phi=\cos (\Phi)$
ex $0.866025=\cos \left(30^{\circ}\right)$
24) Power in Single-Phase AC Circuits

$\mathrm{fx}_{\mathrm{x}} \mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\Phi)$

ex $236.4249 \mathrm{~W}=130 \mathrm{~V} \cdot 2.1 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)$
25) Power in Single-Phase AC Circuits using Current $\sqrt{\boxed{ }}$
$f \times P=I^{2} \cdot R \cdot \cos (\Phi)$
Open Calculator
ex $229.1503 \mathrm{~W}=(2.1 \mathrm{~A})^{2} \cdot 60 \Omega \cdot \cos \left(30^{\circ}\right)$
26) Q Factor for Parallel RLC Circuit
$f_{\mathrm{x}} \mathrm{Q}_{\|}=\mathrm{R} \cdot\left(\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}\right)$
Open Calculator
ex $39.93666=60 \Omega \cdot\left(\sqrt{\frac{350 \mu \mathrm{~F}}{0.79 \mathrm{mH}}}\right)$
27) Q Factor for Series RLC Circuit
$f \mathrm{Ex} \mathrm{Q}_{\mathrm{se}}=\frac{1}{\mathrm{R}} \cdot\left(\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}\right)$
ex $0.02504=\frac{1}{60 \Omega} \cdot\left(\sqrt{\frac{0.79 \mathrm{mH}}{350 \mu \mathrm{~F}}}\right)$

28) Reactive Power

$$
f_{x} \mathrm{Q}=\mathrm{I} \cdot \mathrm{~V} \cdot \sin (\Phi)
$$

ex $136.5 \mathrm{VAR}=2.1 \mathrm{~A} \cdot 130 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)$
29) Reactive Power using Line-to-Neutral Current
$f x \mathrm{Q}=3 \cdot \mathrm{I}_{\mathrm{ln}} \cdot \mathrm{V}_{\ln } \cdot \sin (\Phi)$
ex $134.355 \mathrm{VAR}=3 \cdot 1.3 \mathrm{~A} \cdot 68.9 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)$
30) Reactive Power using RMS Voltage and Current τ
$\mathrm{fx}_{\mathrm{x}} \mathrm{Q}=\mathrm{V}_{\mathrm{rms}} \cdot \mathrm{I}_{\mathrm{rms}} \cdot \sin (\Phi)$
Open Calculator
ex $135.125 \mathrm{VAR}=57.5 \mathrm{~V} \cdot 4.7 \mathrm{~A} \cdot \sin \left(30^{\circ}\right)$
31) Real Power in AC Circuit
$\mathrm{fx} \mathrm{P}=\mathrm{V} \cdot \mathrm{I} \cdot \cos (\Phi)$
ex $236.4249 \mathrm{~W}=130 \mathrm{~V} \cdot 2.1 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)$
32) Real Power using Line-to-Neutral Voltage
$\mathrm{fx} \mathrm{P}=3 \cdot \mathrm{I}_{\mathrm{ln}} \cdot \mathrm{V}_{\mathrm{ln}} \cdot \cos (\Phi)$
Open Calculator
ex $232.7097 \mathrm{~W}=3 \cdot 1.3 \mathrm{~A} \cdot 68.9 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)$
33) Real Power using RMS Voltage and Current
$\mathrm{fx} \mathrm{P}=\mathrm{I}_{\mathrm{rms}} \cdot \mathrm{V}_{\mathrm{rms}} \cdot \cos (\Phi)$
ex $234.0434 \mathrm{~W}=4.7 \mathrm{~A} \cdot 57.5 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)$
34) Resistance for Parallel RLC Circuit using Q Factor
$f \times R=\frac{Q_{\|}}{\sqrt{\frac{\mathrm{C}}{\mathrm{L}}}}$
Open Calculator
ex $59.94492 \Omega=\frac{39.9}{\sqrt{\frac{350 \mathrm{HF}}{0.79 \mathrm{mH}}}}$
35) Resistance for Series RLC Circuit given Q Factor
$\mathrm{fx} R=\frac{\sqrt{L}}{\mathrm{Q}_{\mathrm{se}} \cdot \sqrt{\mathrm{C}}}$
Open Calculator ©
ex $60.09516 \Omega=\frac{\sqrt{0.79 \mathrm{mH}}}{0.025 \cdot \sqrt{350 \mu \mathrm{~F}}}$
36) Resistance using Time Constant
$f \mathrm{fx}=\frac{\tau}{\mathrm{C}}$
ex $60 \Omega=\frac{21 \mathrm{~ms}}{350 \mu \mathrm{~F}}$

37) Resonant Frequency for RLC circuit

ex $302.6722 \mathrm{~Hz}=\frac{1}{2 \cdot \pi \cdot \sqrt{0.79 \mathrm{mH} \cdot 350 \mu \mathrm{~F}}}$
38) RMS Current using Reactive Power
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{Q}}{\mathrm{V}_{\mathrm{rms}} \cdot \sin (\Phi)}$
Open Calculator
ex $4.66087 \mathrm{~A}=\frac{134 \mathrm{VAR}}{57.5 \mathrm{~V} \cdot \sin \left(30^{\circ}\right)}$
39) RMS Current using Real Power
$f \mathrm{f} \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{P}}{\mathrm{V}_{\mathrm{rms}} \cdot \cos (\Phi)}$
Open Calculator
ex $4.719211 \mathrm{~A}=\frac{235 \mathrm{~W}}{57.5 \mathrm{~V} \cdot \cos \left(30^{\circ}\right)}$
40) RMS Voltage using Reactive Power
$f \mathrm{fx} \mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{Q}}{\mathrm{I}_{\mathrm{rms}} \cdot \sin (\Phi)}$
Open Calculator
ex $57.02128 \mathrm{~V}=\frac{134 \mathrm{VAR}}{4.7 \mathrm{~A} \cdot \sin \left(30^{\circ}\right)}$

41) RMS Voltage using Real Power

ex $57.73503 \mathrm{~V}=\frac{235 \mathrm{~W}}{4.7 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)}$
42) Voltage using Complex Power
$f x V=\sqrt{S \cdot Z}$
Open Calculator
ex $128.9796 \mathrm{~V}=\sqrt{270.5 \mathrm{VA} \cdot 61.5 \Omega}$
43) Voltage using Power Factor
$\mathrm{fx} \mathrm{V}=\frac{\mathrm{P}}{\cos \Phi \cdot \mathrm{I}}$
Open Calculator
ex $130.1218 \mathrm{~V}=\frac{235 \mathrm{~W}}{0.86 \cdot 2.1 \mathrm{~A}}$
44) Voltage using Reactive Power
$f \mathrm{fx}=\frac{\mathrm{Q}}{\mathrm{I} \cdot \sin (\Phi)}$
Open Calculatores
ex $127.619 \mathrm{~V}=\frac{134 \mathrm{VAR}}{2.1 \mathrm{~A} \cdot \sin \left(30^{\circ}\right)}$

45) Voltage using Real Power \preceq

$f \mathrm{~F} \mathrm{~V}=\frac{\mathrm{P}}{\mathrm{I} \cdot \cos (\Phi)}$
ex $129.2165 \mathrm{~V}=\frac{235 \mathrm{~W}}{2.1 \mathrm{~A} \cdot \cos \left(30^{\circ}\right)}$

Variables Used

- C Capacitance (Microfarad)
- cosФ Power Factor
- $\mathbf{f}_{\mathbf{c}}$ Cut-off Frequency (Hertz)
- $\mathbf{f}_{\mathbf{o}}$ Resonant Frequency (Hertz)
- I Current (Ampere)
- In Line to Neutral Current (Ampere)
- Irms Root Mean Square Current (Ampere)
- L Inductance (Millihenry)
- \mathbf{N}_{p} Number of Poles
- P Real Power (Watt)
- Q Reactive Power (Volt Ampere Reactive)
- $\mathbf{Q}_{\|}$Parallel RLC Quality Factor
- $\mathbf{Q}_{\text {se }}$ Series RLC Quality Factor
- R Resistance (Ohm)
- S Complex Power (Volt Ampere)
- T Time Period
- V Voltage (Volt)
- $\mathbf{V}_{\text {In }}$ Line to Neutral Voltage (Volt)
- $\mathrm{V}_{\text {rms }}$ Root Mean Square Voltage (Volt)
- Z Impedance (Ohm)
- $\boldsymbol{\theta}_{\mathrm{e}}$ Electrical Angle (Degree)
- $\boldsymbol{\theta}_{\mathrm{m}}$ Mechanical Angle (Degree)
- t Time Constant (Millisecond)
- Ф Phase Difference (Degree)
- $\boldsymbol{\omega}_{\mathbf{n}}$ Natural Frequency (Hertz)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Time in Millisecond (ms)

Time Unit Conversion

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Power in Volt Ampere (VA), Watt (W), Volt Ampere Reactive (VAR)
Power Unit Conversion
- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Capacitance in Microfarad ($\mu \mathrm{F}$)

Capacitance Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Inductance in Millihenry (mH)

Inductance Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

Check other formula lists

- AC Circuit Design Formulas $\sqrt{\mathcal{G}}$
- AC Power Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/10/2024 | 9:22:30 AM UTC
Please leave your feedback here...

