

Airport Distribution Models Formulas

Calculators!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

1/11

List of 21 Airport Distribution Models Formulas

Airport Distribution Models 🕑

Air Trip Distribution Models 🕑

1) Constant of Proportionality for greater Air Trip Distances

2) Constant of Proportionality given Travel by Air Passengers between Cities

fx
$$K_o = \frac{T_{ij} \cdot C_{ij}^x}{T_j \cdot T_i}$$
 Open Calculator (*)
ex $1.501562 = \frac{5 \cdot (7.75)^2}{20 \cdot 10}$

3) Cost of Travel between i and j given Travel by Air Passengers between Cities

Open Calculator

fx
$$C_{ij} = \left(\frac{K_o \cdot T_j \cdot T_i}{T_{ij}}\right)^{\frac{1}{x}}$$

ex $7.745967 = \left(\frac{1.5 \cdot 20 \cdot 10}{5}\right)^{\frac{1}{2}}$

4) Distance between i and j given Travel by Air Passengers between Cities i and j 🚰

fx
$$d_{ij} = \left(\frac{K_o \cdot P_i \cdot P_j}{T_{ij}}\right)^{\frac{1}{x}}$$
ex
$$16.97056 = \left(\frac{1.5 \cdot 60 \cdot 16}{5}\right)^{\frac{1}{2}}$$

5) Population of destination city given travel by air passengers between cities 🕑

fx
$$P_j = \frac{T_{ij} \cdot (d_{ij}^x)}{K_o \cdot P_i}$$

ex $16.05556 = \frac{5 \cdot ((17)^2)}{1.5 \cdot 60}$

6) Population of origin city given travel by air passengers between cities 🕑

fx
$$P_i = \frac{T_{ij} \cdot (d_{ij}^x)}{K_o \cdot P_j}$$

ex $60.20833 = \frac{5 \cdot ((17)^2)}{1.5 \cdot 16}$

7) Total Air Trips generated in City i for greater Air Trip Distances 🕑

Open Calculator

Open Calculator

8) Total Air Trips generated in City i given Travel by Air Passengers between Cities 💪

fx
$$T_{i} = \frac{T_{ij} \cdot C_{ij}^{x}}{K_{o} \cdot T_{j}}$$

$$ex 10.01042 = \frac{5 \cdot (7.75)^{2}}{1.5 \cdot 20}$$
Open Calculator

9) Total Air Trips generated in City j for greater Air Trip Distances 🕑

10) Total Air Trips generated in City j given Travel by Air Passengers between Cities

$$\begin{array}{l} & \textbf{fx} \end{array} \mathbf{T}_{j} = \frac{\mathbf{T}_{ij} \cdot \mathbf{C}_{ij}^{x}}{\mathbf{K}_{o} \cdot \mathbf{T}_{i}} \\ & \textbf{ex} \end{array} \\ \begin{array}{l} \textbf{20.02083} = \frac{5 \cdot \left(7.75\right)^{2}}{1.5 \cdot 10} \end{array} \end{array}$$

11) Travel by Air Passengers between Cities i and j

12) Travel by Air Passengers between Cities i and j for greater Air Trip Distances 🕑

fx
$$\mathbf{T}_{ij} = \mathbf{K}_{o} \cdot (\mathbf{T}_{i} \cdot \mathbf{T}_{j})^{P}$$

ex $4.811914 = 1.5 \cdot (10 \cdot 20)^{0.22}$

 $\mathbf{K}_{\mathrm{o}} \cdot \mathbf{T}_{\mathrm{i}} \cdot \mathbf{T}_{\mathrm{j}}$

13) Travel by Air Passengers between Cities i and j given Travel Cost

$$\mathbf{F}_{ij} = \underbrace{\mathbf{C}_{ij}^{x}}_{\mathbf{C}_{ij}^{y}}$$
ex $4.994797 = \frac{1.5 \cdot 10 \cdot 20}{(7.75)^{2}}$
Generation-Distribution Models **C**

14) Air Trips between i and j **C**

fx $\mathbf{F}_{ij} = (\mathbf{P}_{i} \cdot \mathbf{P}_{j}) \cdot (\mathbf{x} + (\beta \cdot \mathbf{t}) + (\mathbf{Q}_{ij}))$

ex $12105.6 = (60 \cdot 16) \cdot (2 + (0.1 \cdot 5.1) + (10.1))$

15) Air Trips in Year y for Stated Purpose under Leisure Category 🕑

$$\texttt{Den Calculator} \qquad \texttt{Open C$$

R_A

Open Calculator 🕑

Open Calculator 🕑

16) Country Pair Relation Index given Air Traffic between Stations i and j

$$\beta = \left(\frac{P_{ij}}{a_0 \cdot (\alpha \cdot GNP)^b - \{0\} \cdot (\alpha \cdot GNP)^C \cdot \left(F_e + A + \left(\frac{B}{F_e - C}\right)\right)}\right)^{\frac{1}{d}}$$

$$0.487892 = \left(rac{500}{10.5 \cdot (5.5 \cdot 460)^{0.01} \cdot (5.5 \cdot 460)^{0.2} \cdot \left(10.15 + 0.5 + \left(rac{0.3}{10.15 - 0.2}
ight)
ight)}
ight)^{rac{1}{0.21}}$$

17) Factor to adjust for Quantum Effects given Air Trips between i and j 🕑

fx
$$egin{aligned} \mathsf{Q}_{ij} = \left(rac{F_{ij}}{P_i\cdot P_j}
ight) - \mathrm{x} - \left(\beta\cdot \mathrm{t}
ight) \end{aligned}$$

ex
$$9.99 = \left(\frac{12000}{60 \cdot 16}\right) - 2 - (0.1 \cdot 5.1)$$

18) Income for Leisure given Air Trips for Stated Purpose under Leisure Category 🕑

$$\mathbf{f_{yl}} = \frac{\left(\frac{\mathrm{II}}{\mathrm{P_i}}\right) - \mathbf{a}}{\mathbf{b} \cdot \left(\frac{1}{1 + \left(\mathrm{K} \cdot \left(\frac{\mathrm{F}}{\mathrm{I}}\right)^{\mathrm{q}}\right)}\right)}$$

$$\mathbf{ex} \quad 6.023536 = \frac{\left(\frac{325}{60}\right) - 0.6}{0.8 \cdot \left(\frac{1}{1 + \left(0.98 \cdot \left(\frac{32}{68}\right)^{10.2}\right)}\right)}$$

ex

Open Calculator 🕑

19) Population at i given Air Trips between i and j 🕑

$$\begin{aligned} & \mathbf{F}_{i} = \frac{F_{ij}}{\left(\mathbf{x} + (\beta \cdot \mathbf{t}) + \left(\mathbf{Q}_{ij}\right)\right) \cdot \mathbf{P}_{j}} \end{aligned}$$

$$e \mathbf{x} 59.47661 = \frac{12000}{\left(2 + (0.1 \cdot 5.1) + (10.1)\right) \cdot 16} \end{aligned}$$

20) Population at Origin given Air Trips in Year y for Stated Purpose under Leisure Category

$$\begin{aligned} & \mathsf{fx} \ \mathbf{P}_{i} = \frac{\mathrm{II}}{\mathrm{a} + (\mathrm{b} \cdot \mathbf{f}_{yl}) \cdot \left(\frac{1}{1 + (\mathrm{K} \cdot \left(\frac{\mathrm{F}}{\mathrm{I}}\right)^{\mathrm{q}})}\right)} \end{aligned}$$

$$\begin{aligned} & \mathsf{ex} \ 60.2092 = \frac{325}{0.6 + (0.8 \cdot 6) \cdot \left(\frac{1}{1 + \left(0.98 \cdot \left(\frac{32}{68}\right)^{10.2}\right)}\right)} \end{aligned}$$

21) Time in Years given Air Trips between i and j

fx
$$\mathbf{t} = rac{\left(rac{\mathrm{F}_{ij}}{\mathrm{P}_i \cdot \mathrm{P}_j}
ight) - \mathrm{x} - \mathrm{Q}_{ij}}{\beta}$$
 ex $4 = rac{\left(rac{12000}{60 \cdot 16}
ight) - 2 - 10.1}{0.1}$

Open Calculator 🕑

© calculatoratoz.com. A softusvista inc. venture!

Variables Used

- a Regression Contant a
- A Currency Scale Constant a
- **a**₀ Regression Coefficient a
- **b** Regression Contant b
- B Currency Scale Constant b
- **b**₀ Regression Coefficient b
- C Currency Scale Constant c
- C_{ii} Cost of Travel between Cities
- d Regression Coefficient d
- d_{ij} Distance between Cities
- F Mean Total Effective Fair
- Fe Economy Fare
- F_{ii} Air Trips between i and j
- f_{vl} Income
- GNP Real Gross National Product
- I Mean Income of Households
- II Air Trips in Year y for stated Purpose
- K Constant Reflection Surface Route Saturation
- K_o Proportionality Constant
- P Calibrated Parameter
- **P**_i Population of Origin City
- P_{ij} Air Passengers between Cities i and j
- P_i Population of Destination City
- **q** Constant q
- Q_{ii} Factor to Adjust for Quantum Effects
- t Number of Years

- T_i Total Air Trips generated in City i
- + \mathbf{T}_{ij} Travel by Air Passengers between Cities i and j
- T_i Total Air Trips generated in City j
- X Calibrated Constant
- α Station Share of GNP
- β Country Pair Relation Index

Constants, Functions, Measurements used

10/11

Check other formula lists

- Aircraft Runway Length Estimation
 Formulas
- Airport Distribution Models
 Formulas
- Airport Forecast Methods Formulas G
- Engine-Out Takeoff Case under Estimation of Runway Length Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/29/2023 | 4:59:27 AM UTC

Please leave your feedback here ...

