\square囲

calculatoratoz.com

Airport Distribution Models Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Airport Distribution Models Formulas

Airport Distribution Models ©

Air Trip Distribution Models

1) Constant of Proportionality for greater Air Trip Distances
$\mathbf{f} \mathrm{K}_{\mathrm{o}}=\frac{\mathrm{T}_{\mathrm{ij}}}{\left(\mathrm{T}_{\mathrm{j}} \cdot \mathrm{T}_{\mathrm{i}}\right)^{\mathrm{P}}}$

$$
\text { ex } 1.558631=\frac{5}{(20 \cdot 10)^{0.22}}
$$

2) Constant of Proportionality given Travel by Air Passengers between Cities
$f \mathrm{fx} \mathrm{K}_{\mathrm{o}}=\frac{\mathrm{T}_{\mathrm{ij}} \cdot \mathrm{C}_{\mathrm{ij}}^{\mathrm{x}}}{\mathrm{T}_{\mathrm{j}} \cdot \mathrm{T}_{\mathrm{i}}}$
$\operatorname{ex} 1.501562=\frac{5 \cdot(7.75)^{2}}{20 \cdot 10}$
3) Cost of Travel between i and j given Travel by Air Passengers between Cities
$f_{\mathrm{x}} \mathrm{C}_{\mathrm{ij}}=\left(\frac{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{T}_{\mathrm{j}} \cdot T_{\mathrm{i}}}{\mathrm{T}_{\mathrm{ij}}}\right)^{\frac{1}{\mathrm{x}}}$
Open Calculator [
ex $7.745967=\left(\frac{1.5 \cdot 20 \cdot 10}{5}\right)^{\frac{1}{2}}$
4) Distance between i and j given Travel by Air Passengers between Cities i and j
$f x d_{i j}=\left(\frac{K_{o} \cdot P_{i} \cdot P_{j}}{T_{i j}}\right)^{\frac{1}{x}}$
ex $16.97056=\left(\frac{1.5 \cdot 60 \cdot 16}{5}\right)^{\frac{1}{2}}$
5) Population of destination city given travel by air passengers between cities
$f \mathbf{x} P_{j}=\frac{T_{i j} \cdot\left(d_{i j}^{x}\right)}{K_{o} \cdot P_{i}}$
ex $16.05556=\frac{5 \cdot\left((17)^{2}\right)}{1.5 \cdot 60}$
6) Population of origin city given travel by air passengers between cities
$f \mathbf{x} \mathrm{P}_{\mathrm{i}}=\frac{\mathrm{T}_{\mathrm{ij}} \cdot\left(\mathrm{d}_{\mathrm{ij}}^{\mathrm{x}}\right)}{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{P}_{\mathrm{j}}}$
$\operatorname{ex} 60.20833=\frac{5 \cdot\left((17)^{2}\right)}{1.5 \cdot 16}$
7) Total Air Trips generated in City i for greater Air Trip Distances
$f \times T_{i}=\frac{\left(\frac{T_{i j}}{K_{o}}\right)^{\frac{1}{P}}}{T_{j}}$
$\operatorname{ex} 11.90396=\frac{\left(\frac{5}{1.5}\right)^{\frac{1}{0.22}}}{20}$
8) Total Air Trips generated in City i given Travel by Air Passengers between Cities
$f \mathrm{fx} \mathrm{T}_{\mathrm{i}}=\frac{\mathrm{T}_{\mathrm{ij}} \cdot \mathrm{C}_{\mathrm{ij}}^{\mathrm{x}}}{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{T}_{\mathrm{j}}}$
Open Calculator
ex $10.01042=\frac{5 \cdot(7.75)^{2}}{1.5 \cdot 20}$
9) Total Air Trips generated in City j for greater Air Trip Distances $\boxed{3}$
$f \mathrm{fx} \mathrm{T}_{\mathrm{j}}=\frac{\left(\frac{\mathrm{T}_{\mathrm{ij}}}{\mathrm{K}_{\mathrm{o}}}\right)^{\frac{1}{P}}}{\mathrm{~T}_{\mathrm{i}}}$
Open Calculator
ex $23.80793=\frac{\left(\frac{5}{1.5}\right)^{\frac{1}{0.22}}}{10}$
10) Total Air Trips generated in City j given Travel by Air Passengers between Cities U
$f \mathrm{f}=\mathrm{T}_{\mathrm{j}}=\frac{\mathrm{T}_{\mathrm{ij}} \cdot \mathrm{C}_{\mathrm{ij}}^{\mathrm{X}}}{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{T}_{\mathrm{i}}}$
Open Calculator
ex $20.02083=\frac{5 \cdot(7.75)^{2}}{1.5 \cdot 10}$
11) Travel by Air Passengers between Cities i and j

$f \mathrm{f} \mathrm{T}_{\mathrm{ij}}=\frac{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{P}_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{j}}}{\mathrm{d}_{\mathrm{ij}}^{\mathrm{X}}}$
ex $4.982699=\frac{1.5 \cdot 60 \cdot 16}{(17)^{2}}$
12) Travel by Air Passengers between Cities i and j for greater Air Trip Distances
$f \mathrm{f} \mathrm{T}_{\mathrm{ij}}=\mathrm{K}_{\mathrm{o}} \cdot\left(\mathrm{T}_{\mathrm{i}} \cdot \mathrm{T}_{\mathrm{j}}\right)^{\mathrm{P}}$
ex $4.811914=1.5 \cdot(10 \cdot 20)^{0.22}$
13) Travel by Air Passengers between Cities i and j given Travel Cost
$f \mathrm{fx} \mathrm{T}_{\mathrm{ij}}=\frac{\mathrm{K}_{\mathrm{o}} \cdot \mathrm{T}_{\mathrm{i}} \cdot \mathrm{T}_{\mathrm{j}}}{\mathrm{C}_{\mathrm{ij}}^{\mathrm{x}}}$
ex $4.994797=\frac{1.5 \cdot 10 \cdot 20}{(7.75)^{2}}$

Generation-Distribution Models

14) Air Trips between i and j
$f \mathrm{x} \mathrm{F}_{\mathrm{ij}}=\left(\mathrm{P}_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{j}}\right) \cdot\left(\mathrm{x}+(\beta \cdot \mathrm{t})+\left(\mathrm{Q}_{\mathrm{ij}}\right)\right)$
Open Calculator [1)
ex $12105.6=(60 \cdot 16) \cdot(2+(0.1 \cdot 5.1)+(10.1))$
15) Air Trips in Year y for Stated Purpose under Leisure Category
$f x=I I=P_{i} \cdot\left(a+\left(b \cdot f_{y l}\right) \cdot\left(\frac{1}{1+\left(K \cdot\left(\frac{F}{I}\right)^{q}\right)}\right)\right)$
Open Calculator
$\operatorname{ex} 323.8708=60 \cdot\left(0.6+(0.8 \cdot 6) \cdot\left(\frac{1}{1+\left(0.98 \cdot\left(\frac{32}{68}\right)^{10.2}\right)}\right)\right)$
16) Country Pair Relation Index given Air Traffic between Stations iand j
$\beta=\left(\frac{P_{i j}}{a_{0} \cdot(\alpha \cdot G N P)^{b}-\{0\} \cdot(\alpha \cdot G N P)^{C} \cdot\left(F_{e}+A+\left(\frac{B}{F_{e}-C}\right)\right)}\right)^{\frac{1}{d}}$
ex
$0.487892=\left(\frac{500}{10.5 \cdot(5.5 \cdot 460)^{0.01} \cdot(5.5 \cdot 460)^{0.2} \cdot\left(10.15+0.5+\left(\frac{0.3}{10.15-0.2}\right)\right)}\right)^{\frac{1}{0.21}}$
17) Factor to adjust for Quantum Effects given Air Trips between i and j
$f \mathrm{x} \mathrm{Q}_{\mathrm{ij}}=\left(\frac{\mathrm{F}_{\mathrm{ij}}}{\mathrm{P}_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{j}}}\right)-\mathrm{x}-(\beta \cdot \mathrm{t})$
ex $9.99=\left(\frac{12000}{60 \cdot 16}\right)-2-(0.1 \cdot 5.1)$
18) Income for Leisure given Air Trips for Stated Purpose under Leisure Category
$f x f_{y l}=\frac{\left(\frac{I I}{P_{i}}\right)-a}{b \cdot\left(\frac{1}{1+\left(K \cdot\left(\frac{F}{I}\right)^{q}\right)}\right)}$
ex $6.023536=\frac{\left(\frac{325}{60}\right)-0.6}{0.8 \cdot\left(\frac{1}{1+\left(0.98 \cdot\left(\frac{32}{68}\right)^{10.2}\right)}\right)}$
19) Population at i given Air Trips between i and ju
$\mathrm{fx} \mathrm{P}_{\mathrm{i}}=\frac{\mathrm{F}_{\mathrm{ij}}}{\left(\mathrm{x}+(\beta \cdot \mathrm{t})+\left(\mathrm{Q}_{\mathrm{ij}}\right)\right) \cdot \mathrm{P}_{\mathrm{j}}}$
ex $59.47661=\frac{12000}{(2+(0.1 \cdot 5.1)+(10.1)) \cdot 16}$
20) Population at Origin given Air Trips in Year y for Stated Purpose under Leisure Category
$f x P_{i}=\frac{I I}{a+\left(b \cdot f_{y l}\right) \cdot\left(\frac{1}{1+\left(K \cdot\left(\frac{F}{I}\right)^{q}\right)}\right)}$
$\operatorname{ex} 60.2092=\frac{325}{0.6+(0.8 \cdot 6) \cdot\left(\frac{1}{1+\left(0.98 \cdot\left(\frac{32}{68}\right)^{10.2}\right)}\right)}$
21) Time in Years given Air Trips between i and j
$f \mathrm{fx} \mathrm{t}=\frac{\left(\frac{\mathrm{F}_{\mathrm{ij}}}{\mathrm{P}_{\mathrm{i}} \cdot P_{\mathrm{j}}}\right)-\mathrm{x}-\mathrm{Q}_{\mathrm{ij}}}{\beta}$
$\operatorname{ex} 4=\frac{\left(\frac{12000}{60 \cdot 16}\right)-2-10.1}{0.1}$

Variables Used

- a Regression Contant a
- A Currency Scale Constant a
- a_{0} Regression Coefficient a
- b Regression Contant b
- B Currency Scale Constant b
- \mathbf{b}_{0} Regression Coefficient b
- C Currency Scale Constant c
- \mathbf{C}_{ij} Cost of Travel between Cities
- d Regression Coefficient d
- \mathbf{d}_{ij} Distance between Cities
- F Mean Total Effective Fair
- F_{e} Economy Fare
- F_{ij} Air Trips between i and j
- $f_{y l}$ Income
- GNP Real Gross National Product
- I Mean Income of Households
- II Air Trips in Year y for stated Purpose
- K Constant Reflection Surface Route Saturation
- $\mathbf{K}_{\mathbf{o}}$ Proportionality Constant
- P Calibrated Parameter
- $\mathbf{P}_{\mathbf{i}}$ Population of Origin City
- \mathbf{P}_{ij} Air Passengers between Cities i and j
- $\mathbf{P}_{\mathbf{j}}$ Population of Destination City
- q Constant q
- $\mathbf{Q}_{\mathbf{i j}}$ Factor to Adjust for Quantum Effects
- t Number of Years
- $\mathbf{T}_{\mathbf{i}}$ Total Air Trips generated in City i
- T_{ij} Travel by Air Passengers between Cities i and j
- $\mathbf{T}_{\mathbf{j}}$ Total Air Trips generated in City \mathbf{j}
- X Calibrated Constant
- α Station Share of GNP
- $\boldsymbol{\beta}$ Country Pair Relation Index

Constants, Functions, Measurements used

Check other formula lists

- Aircraft Runway Length Estimation Formulas \longleftarrow
- Airport Distribution Models

Formulas

- Airport Forecast Methods Formulas
- Engine-Out Takeoff Case under Estimation of Runway Length Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

