



# Control System Design Formulas

#### Calculators!

**Examples!** 

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





# **List of 31 Control System Design Formulas**

### Control System Design 🕑

### 1) Angle of Asymptotes 🕑

fx 
$$\phi_k = rac{(2 \cdot (\mathrm{modulus}(\mathrm{N}-\mathrm{M})-1)+1) \cdot \pi}{\mathrm{modulus}(\mathrm{N}-\mathrm{M})}$$

$$\texttt{ex} \quad 5.834386 \texttt{rad} = \frac{(2 \cdot (\texttt{modulus}(13-6)-1)+1) \cdot \pi}{\texttt{modulus}(13-6)}$$

Open Calculator 🗹

### 2) Bandwidth Frequency given Damping Ratio

$$\label{eq:fb} \overbrace{f_{b}=\omega_{n}\cdot\left(\sqrt{1-\left(2\cdot\zeta^{2}\right)}+\sqrt{\zeta^{4}-\left(4\cdot\zeta^{2}\right)+2}\right)}^{\text{Open Calculator }}$$

$$54.96966 ext{Hz} = 23 ext{Hz} \cdot \left( \sqrt{1 - \left( 2 \cdot \left( 0.1 
ight)^2 
ight)} + \sqrt{\left( 0.1 
ight)^4 - \left( 4 \cdot \left( 0.1 
ight)^2 
ight) + 2} 
ight)^2$$

#### 3) Damped Natural Frequency

fx  $\omega_{\rm d} = \omega_{\rm n} \cdot \sqrt{1-\zeta^2}$ ex  $22.88471 {
m Hz} = 23 {
m Hz} \cdot \sqrt{1-(0.1)^2}$  Open Calculator



#### 4) Damping Ratio given Critical Damping 💪













ex 
$$0.137279 \mathrm{s} = rac{\pi}{23 \mathrm{Hz} \cdot \sqrt{1 - (0.1)^2}}$$











|                                                                                                                                                                | 1,10              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 18) Resonant Peak 🚰                                                                                                                                            |                   |
| fx $\mathrm{M_r} = rac{1}{2 \cdot \zeta \cdot \sqrt{1-\zeta^2}}$                                                                                              | Open Calculator   |
| ex $5.025189 = rac{1}{2 \cdot 0.1 \cdot \sqrt{1 - (0.1)^2}}$                                                                                                  |                   |
| 19) Rise Time given Damped Natural Frequency 🖸                                                                                                                 |                   |
| fx $\mathbf{t_r} = rac{\pi - \Phi}{\omega_{\mathrm{d}}}$                                                                                                      | Open Calculator 🗗 |
| ex $0.125507s = \frac{\pi - 0.27rad}{22.88Hz}$                                                                                                                 |                   |
| 20) Rise Time given Damping Ratio 🚰                                                                                                                            |                   |
| fx $\mathbf{t_r} = rac{\pi - \left( \Phi \cdot rac{\pi}{180}  ight)}{\omega_{ m n} \cdot \sqrt{1 - \zeta^2}}$                                                | Open Calculator 🗗 |
| $\overbrace{\text{ex}}{0.137073 \text{s}} = \frac{\pi - \left(0.27 \text{rad} \cdot \frac{\pi}{180}\right)}{23 \text{Hz} \cdot \sqrt{1 - \left(0.1\right)^2}}$ |                   |
| 21) Rise Time given Delay Time 🕑                                                                                                                               |                   |
| fx $\mathbf{t}_{\mathrm{r}} = 1.5 \cdot \mathbf{t}_{\mathrm{d}}$                                                                                               | Open Calculator   |
| ex $0.06\mathrm{s} = 1.5\cdot0.04\mathrm{s}$                                                                                                                   |                   |
| © <u>calculatoratoz.com</u> . A <u>softusvista inc.</u> venture!                                                                                               | $\bigcirc$        |







$$\begin{array}{l} \hbox{fx} T_{\rm po} = \frac{\left(2\cdot {\rm k}-1\right)\cdot \pi}{\omega_{\rm d}} \end{array} \end{array} \hspace{2cm} \hbox{Open Calculator} \end{array}$$

28) Time Period of Oscillations





29) Time Response in Overdamped Case 🖸



# Variables Used

- % Percentage Overshoot
- A Coefficient Value
- A<sub>M</sub> Amplifier Gain in Mid Band
- BW Amplifier Bandwidth (Bit Per Second)
- C Damping Coefficient
- C Actual Damping
- C<sub>c</sub> Critical Damping
- +  $\mathbf{C}_{\mathbf{t}}$  Time Response for Second Order System
- ess Steady State Error
- **f**<sub>b</sub> Bandwidth Frequency (*Hertz*)
- **G.B** Gain-Bandwidth Product (*Hertz*)
- k Kth Value
- Ka Acceleration Error Constant
- K<sub>p</sub> Position of Error Constant
- K<sub>spring</sub> Spring Constant (Newton per Meter)
- K<sub>v</sub> Velocity Error Constant
- **m** Mass (Kilogram)
- M Number of Zeroes
- M<sub>o</sub> Peak Overshoot
- M<sub>r</sub> Resonant Peak
- Mu Peak Undershoot
- **n** Number of Oscillations (*Hertz*)

- N Number of Poles
- Na Number of Asymptotes
- Q Q Factor
- **T** Time Period for Oscillations (Second)
- t<sub>d</sub> Delay Time (Second)
- tp Peak Time (Second)
- Tpo Time of Peak Overshoot (Second)
- t<sub>r</sub> Rise Time (Second)
- **t<sub>s</sub>** Setting Time (Second)
- $\boldsymbol{\zeta}$  Damping Ratio
- $\zeta_{over}$  Overdamping Ratio
- **Φ** Phase Shift (Radian)
- **\$\phi\_k\$** Angle of Asymptotes (Radian)
- ω<sub>d</sub> Damped Natural Frequency (*Hertz*)
- ω<sub>n</sub> Natural Frequency of Oscillation (*Hertz*)
- ω<sub>r</sub> Resonant Frequency (*Hertz*)

### **Constants, Functions, Measurements used**

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: modulus, modulus Modulus of a number is the remainder when that number is divided by another number.
- Function: sqrt, sqrt(Number)
   A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Bandwidth in Bit Per Second (b/s) Bandwidth Unit Conversion



13/15

• Measurement: Stiffness Constant in Newton per Meter (N/m) Stiffness Constant Unit Conversion





# **Check other formula lists**

- Control System Design
   Formulas
- Transient and Steady State Response Formulas
- Electrical Control System
   Modelling Formulas

Feel free to SHARE this document with your friends!

### **PDF Available in**

English Spanish French German Russian Italian Portuguese Polish Dutch

5/10/2024 | 9:21:33 AM UTC

Please leave your feedback here...



